skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coretti, Sandro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dachman-Soled, Dana (Ed.)
    Pseudorandom number generators with input (PRNGs) are cryptographic algorithms that generate pseudorandom bits from accumulated entropic inputs (e.g., keystrokes, interrupt timings, etc.). This paper studies in particular PRNGs that are secure against premature next attacks (Kelsey et al., FSE '98), a class of attacks leveraging the fact that a PRNG may produce an output (which could be seen by an adversary!) before enough entropy has been accumulated. Practical designs adopt either unsound entropy-estimation methods to prevent such attacks (as in Linux’s /dev/random) or sophisticated pool-based approaches as in Yarrow (MacOS/FreeBSD) and Fortuna (Windows). The only prior theoretical study of premature next attacks (Dodis et al., Algorithmica '17) considers either a seeded setting or assumes constant entropy rate, and thus falls short of providing and validating practical designs. Assuming the availability of random seed is particularly problematic, first because this requires us to somehow generate a random seed without using our PRNG, but also because we must ensure that the entropy inputs to the PRNG remain independent of the seed. Indeed, all practical designs are seedless. However, prior works on seedless PRNGs (Coretti et al., CRYPTO '19; Dodis et al., ITC '21, CRYPTO'21) do not consider premature next attacks. The main goal of this paper is to investigate the feasibility of theoretically sound seedless PRNGs that are secure against premature next attacks. To this end, we make the following contributions: 1) We prove that it is impossible to achieve seedless PRNGs that are secure against premature-next attacks, even in a rather weak model. Namely, the impossibility holds even when the entropic inputs to the PRNG are independent. In particular, our impossibility result holds in settings where seedless PRNGs are otherwise possible. 2) Given the above impossibility result, we investigate whether existing seedless pool-based approaches meant to overcome premature next attacks in practical designs provide meaningful guarantees in certain settings. Specifically, we show the following. 3) We introduce a natural condition on the entropic input and prove that it implies security of the round-robin entropy accumulation PRNG used by Windows 10, called Fortuna. Intuitively, our condition requires the input entropy "not to vary too wildly" within a given round-robin round. 4) We prove that the "root pool" approach (also used in Windows 10) is secure for general entropy inputs, provided that the system’s state is not compromised after system startup. 
    more » « less
  2. null (Ed.)
    The random-permutation model (RPM) and the ideal-cipher model (ICM) are idealized models that offer a simple and intuitive way to assess the conjectured standard-model security of many important symmetric-key and hash-function constructions. Similarly, the generic-group model (GGM) captures generic algorithms against assumptions in cyclic groups by modeling encodings of group elements as random injections and allows to derive simple bounds on the advantage of such algorithms. Unfortunately, both well-known attacks, e.g., based on rainbow tables (Hellman, IEEE Transactions on Information Theory ’80), and more recent ones, e.g., against the discrete-logarithm problem (Corrigan-Gibbs and Kogan, EUROCRYPT ’18), suggest that the concrete security bounds one obtains from such idealized proofs are often completely inaccurate if one considers non-uniform or preprocessing attacks in the standard model. To remedy this situation, this work defines the auxiliary-input (AI) RPM/ICM/GGM, which capture both non-uniform and preprocessing attacks by allowing an attacker to leak an arbitrary (bounded-output) function of the oracle’s function table; derives the first non-uniform bounds for a number of important practical applications in the AI-RPM/ICM, including constructions based on the Merkle-Damgård and sponge paradigms, which underly the SHA hashing standards, and for AI-RPM/ICM applications with computational security; and using simpler proofs, recovers the AI-GGM security bounds obtained by Corrigan-Gibbs and Kogan against preprocessing attackers, for a number of assumptions related to cyclic groups, such as discrete logarithms and Diffie-Hellman problems, and provides new bounds for two assumptions. An important step in obtaining these results is to port the tools used in recent work by Coretti et al. (EUROCRYPT ’18) from the ROM to the RPM/ICM/GGM, resulting in very powerful and easy-to-use tools for proving security bounds against non-uniform and preprocessing attacks. 
    more » « less